Efficient and robust trajectories play a crucial role in contact-rich manipulation, which demands accurate mod- eling of object-robot interactions. Many existing approaches rely on point contact models due to their computational effi- ciency. Simple contact models are computationally efficient but inherently limited for achieving human-like, contact-rich ma- nipulation, as they fail to capture key frictional dynamics and torque generation observed in human manipulation. This study introduces a Force-Distributed Line Contact (FDLC) model in contact-rich manipulation and compares it against conventional point contact models. A bi-level optimization framework is constructed, in which the lower-level solves an optimization problem for contact force computation, and the upper-level optimization applies iLQR for trajectory optimization. Through this framework, the limitations of point contact are demon- strated, and the benefits of the FDLC in generating efficient and robust trajectories are established. The effectiveness of the proposed approach is validated by a box rotating task, demonstrating that FDLC enables trajectories generated via non-uniform force distributions along the contact line, while requiring lower control effort and less motion of the robot.
Traditional data processing pipelines are typically static and handcrafted for specific tasks, limiting their adaptability to evolving requirements. While general-purpose agents and coding assistants can generate code for well-understood data pipelines, they lack the ability to autonomously monitor, manage, and optimize an end-to-end pipeline once deployed. We present \textbf{Autonomous Data Processing using Meta-agents} (ADP-MA), a framework that dynamically constructs, executes, and iteratively refines data processing pipelines through hierarchical agent orchestration. At its core, \textit{meta-agents} analyze input data and task specifications to design a multi-phase plan, instantiate specialized \textit{ground-level agents}, and continuously evaluate pipeline performance. The architecture comprises three key components: a planning module for strategy generation, an orchestration layer for agent coordination and tool integration, and a monitoring loop for iterative evaluation and backtracking. Unlike conventional approaches, ADP-MA emphasizes context-aware optimization, adaptive workload partitioning, and progressive sampling for scalability. Additionally, the framework leverages a diverse set of external tools and can reuse previously designed agents, reducing redundancy and accelerating pipeline construction. We demonstrate ADP-MA through an interactive demo that showcases pipeline construction, execution monitoring, and adaptive refinement across representative data processing tasks.
Selective prediction aims to endow predictors with a reject option, to avoid low confidence predictions. However, existing literature has primarily focused on closed-set tasks, such as visual question answering with predefined options or fixed-category classification. This paper considers selective prediction for visual language foundation models, addressing a taxonomy of tasks ranging from closed to open set and from finite to unbounded vocabularies, as in image captioning. We seek training-free approaches of low-complexity, applicable to any foundation model and consider methods based on external vision-language model embeddings, like CLIP. This is denoted as Plug-and-Play Selective Prediction (PaPSP). We identify two key challenges: (1) instability of the visual-language representations, leading to high variance in image-text embeddings, and (2) poor calibration of similarity scores. To address these issues, we propose a memory augmented PaPSP (MA-PaPSP) model, which augments PaPSP with a retrieval dataset of image-text pairs. This is leveraged to reduce embedding variance by averaging retrieved nearest-neighbor pairs and is complemented by the use of contrastive normalization to improve score calibration. Through extensive experiments on multiple datasets, we show that MA-PaPSP outperforms PaPSP and other selective prediction baselines for selective captioning, image-text matching, and fine-grained classification. Code is publicly available at https://github.com/kingston-aditya/MA-PaPSP.
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
Generalization to unseen concepts is a central challenge due to the scarcity of human annotations in Mention-agnostic Biomedical Concept Recognition (MA-BCR). This work makes two key contributions to systematically address this issue. First, we propose an evaluation framework built on hierarchical concept indices and novel metrics to measure generalization. Second, we explore LLM-based Auto-Labeled Data (ALD) as a scalable resource, creating a task-specific pipeline for its generation. Our research unequivocally shows that while LLM-generated ALD cannot fully substitute for manual annotations, it is a valuable resource for improving generalization, successfully providing models with the broader coverage and structural knowledge needed to approach recognizing unseen concepts. Code and datasets are available at https://github.com/bio-ie-tool/hi-ald.
LLM-based Multi-Agent (LLM-MA) systems are increasingly applied to automate complex software engineering tasks such as requirements engineering, code generation, and testing. However, their operational efficiency and resource consumption remain poorly understood, hindering practical adoption due to unpredictable costs and environmental impact. To address this, we conduct an analysis of token consumption patterns in an LLM-MA system within the Software Development Life Cycle (SDLC), aiming to understand where tokens are consumed across distinct software engineering activities. We analyze execution traces from 30 software development tasks performed by the ChatDev framework using a GPT-5 reasoning model, mapping its internal phases to distinct development stages (Design, Coding, Code Completion, Code Review, Testing, and Documentation) to create a standardized evaluation framework. We then quantify and compare token distribution (input, output, reasoning) across these stages. Our preliminary findings show that the iterative Code Review stage accounts for the majority of token consumption for an average of 59.4% of tokens. Furthermore, we observe that input tokens consistently constitute the largest share of consumption for an average of 53.9%, providing empirical evidence for potentially significant inefficiencies in agentic collaboration. Our results suggest that the primary cost of agentic software engineering lies not in initial code generation but in automated refinement and verification. Our novel methodology can help practitioners predict expenses and optimize workflows, and it directs future research toward developing more token-efficient agent collaboration protocols.
Ramp merging is a critical and challenging task for autonomous vehicles (AVs), particularly in mixed traffic environments with human-driven vehicles (HVs). Existing approaches typically rely on either lane-changing or inter-vehicle gap creation strategies based solely on local or neighboring information, often leading to suboptimal performance in terms of safety and traffic efficiency. In this paper, we present a V2X (vehicle-to-everything communication)-assisted Multiagent Reinforcement Learning (MARL) framework for on-ramp merging that effectively coordinates the complex interplay between lane-changing and inter-vehicle gap adaptation strategies by utilizing zone-specific global information available from a roadside unit (RSU). The merging control problem is formulated as a Multiagent Partially Observable Markov Decision Process (MA-POMDP), where agents leverage both local and global observations through V2X communication. To support both discrete and continuous control decisions, we design a hybrid action space and adopt a parameterized deep Q-learning approach. Extensive simulations, integrating the SUMO traffic simulator and the MOSAIC V2X simulator, demonstrate that our framework significantly improves merging success rate, traffic efficiency, and road safety across diverse traffic scenarios.
Graph-level anomaly detection aims to identify anomalous graphs or subgraphs within graph datasets, playing a vital role in various fields such as fraud detection, review classification, and biochemistry. While Graph Neural Networks (GNNs) have made significant progress in this domain, existing methods rely heavily on large amounts of labeled data, which is often unavailable in real-world scenarios. Additionally, few-shot anomaly detection methods based on GNNs are prone to noise interference, resulting in poor embedding quality and reduced model robustness. To address these challenges, we propose a novel meta-learning-based graph-level anomaly detection framework (MA-GAD), incorporating a graph compression module that reduces the graph size, mitigating noise interference while retaining essential node information. We also leverage meta-learning to extract meta-anomaly information from similar networks, enabling the learning of an initialization model that can rapidly adapt to new tasks with limited samples. This improves the anomaly detection performance on target graphs, and a bias network is used to enhance the distinction between anomalous and normal nodes. Our experimental results, based on four real-world biochemical datasets, demonstrate that MA-GAD outperforms existing state-of-the-art methods in graph-level anomaly detection under few-shot conditions. Experiments on both graph anomaly and subgraph anomaly detection tasks validate the framework's effectiveness on real-world datasets.
This paper investigates an autonomous aerial vehicle (AAV)-enabled integrated sensing, communication, and computation system, with a particular focus on integrating movable antennas (MAs) into the system for enhancing overall system performance. Specifically, multiple MA-enabled AVVs perform sensing tasks and simultaneously transmit the generated computational tasks to the base station for processing. To minimize the maximum latency under the sensing and resource constraints, we formulate an optimization problem that jointly coordinates the position of the MAs, the computation resource allocation, and the transmit beamforming. Due to the non-convexity of the objective function and strong coupling among variables, we propose a two-layer iterative algorithm leveraging particle swarm optimization and convex optimization to address it. The simulation results demonstrate that the proposed scheme achieves significant latency improvements compared to the baseline schemes.
Unmanned aerial vehicles (UAVs) have been recently utilized in multi-access edge computing (MEC) as edge servers. It is desirable to design UAVs' trajectories and user to UAV assignments to ensure satisfactory service to the users and energy efficient operation simultaneously. The posed optimization problem is challenging to solve because: (i) The formulated problem is non-convex, (ii) Due to the mobility of ground users, their future positions and channel gains are not known in advance, (iii) Local UAVs' observations should be communicated to a central entity that solves the optimization problem. The (semi-) centralized processing leads to communication overhead, communication/processing bottlenecks, lack of flexibility and scalability, and loss of robustness to system failures. To simultaneously address all these limitations, we advocate a fully decentralized setup with no centralized entity. Each UAV obtains its local observation and then communicates with its immediate neighbors only. After sharing information with neighbors, each UAV determines its next position via a locally run deep reinforcement learning (DRL) algorithm. None of the UAVs need to know the global communication graph. Two main components of our proposed solution are (i) Graph attention layers (GAT), and (ii) Experience and parameter sharing proximal policy optimization (EPS-PPO). Our proposed approach eliminates all the limitations of semi-centralized MADRL methods such as MAPPO and MA deep deterministic policy gradient (MADDPG), while guaranteeing a better performance than independent local DRLs such as in IPPO. Numerical results reveal notable performance gains in several different criteria compared to the existing MADDPG algorithm, demonstrating the potential for offering a better performance, while utilizing local communications only.